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Experimental chronic renal ischemia: Morphologic and
immunologic studies
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Experimental chronic renal ischemia: Morphologic and immunologic
study. Although unilateral clamping of the renal artery to induce chronic
ischemia of the kidney tissue has been utilized in several animal
species, the resultant morphologic, ultrastructural and immunologic
changes have never been well characterized. Moreover, the pathogen­
esis of these changes, as well as their roles in causing or facilitating the
development of chronic tubulointerstitial nephritis have not been
known. To examine some of these issues, male Sprague-Dawley rats
were subjected to unilateral stenosis of the left main renal artery for 28
days. Stenotic and contralateral kidneys of experimental animals and
kidneys from sham-operated controls were subjected to: (1) light
microscopic, electron microscopic and immunofluorescent studies; (2)
morphometric quantitation of the structural changes; (3) staining for
actin, epithelial membrane antigen, keratin, and vimentin by immuno­
peroxidase technique; (4) staining for complex glycoproteins by a panel
of 13 lectins; and (5) phenotyping and quantitation of the interstitial
inflammatory infiltrates by monoclonal antibodies, using immunoper­
oxidase technique. The results reveal that: (I) The ischemic kidney
tissue displays marked tubulointerstitial damages including abundant
interstitial chronic inflammatory infiltrates, with good preservation of
glomerular structure, which is consistent with the standard criteria of
chronic tubulointerstitial nephritis. (2) The antigenic profile of the
ischemic tubular epithelium displayed marked alterations including a
neo-expression of vimentin and keratin, as well as a loss of endogenous
avidin binding activity, Ia antigen and several complex surface glyco­
proteins detectable by lectins. (3) Neither electron dense deposits nor
immunoglobulins are detectable in the kidneys from experimental or
control animals. (4) Tubulitis, defined as infiltration of tubular epithe­
lium by inflammatory cells, was present in up to 42,2% of tubular cross
sections of the ischemic kidneys. (5) The interstitial inflammatory
infiltrates were composed of B lymphocytes, T helper lymphocytes, and
macrophages whereas the T non-helper lymphocytes were scanty, a
phenotypic pattern similar to that of several other experimental rat
models of chronic tubulointerstitial nephritis. It is concluded that: (I) In
the Sprague-Dawley rats, ischemia alone can cause a constellation of
changes fulfilling the accepted features of chronic interstitial nephritis;
(2) ischemia alters the antigenic profile of the tubular epithelium and
thereby may initiate a cell mediated immune response, accounting for
the observed tubuli tis and interstitial inflammation; and (3) ischemia
may well be the final common pathway for chronic tubulointerstitial
nephritis of diverse etiologies.

Chronic tubulointerstitial nephritis (CTIN) is characterized
morphologically by tubular atrophy, interstitial fibrosis and
interstitial inflammation of variable severity. CTIN may be of
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secondary or primary nature. In the former, the chronic tubu­
lointerstitial damage is considered to be secondary to glomeru­
lar or vascular disease, whereas in the latter it is thought to
occur de novo [1]. Some degree of CTIN is present in virtually
every renal disease in advanced stage, and may well be func­
tionally important [2]. Actually, regardkss of the nature of the

primary renal disease, the decline in glomerular filtration rate is
known to correlate better with tubulointerstitial than with

glomerular or vascular changes [3, 4].
The pathogenesis of CTIN is poorly understood [I]. It has

been speculated that in CTIN, at least in its secondary form,
ischemia, decreased peritubular blood flow, glomerulosclerosis,
and interstitial inflammation may be interrelated in a complex
manner [5, 6]. In this general scheme, the mechanisms by which
ischemia cause tubular atrophy, interstitial fibrosis and intersti­
tial inflammation have not been elucidated.

Unilateral clamping of the renal artery to induce chronic
ischemia of the kidney tissue has been utilized in several
experimental models of hypertension [7-12]. However, most
such studies have focused exclusively on various physiologic
aspects of the resultant changes in hemodynamics and renal
function, almost to the total neglect of the morphologic, ultra­
structural and immunologic aspects of the ischemia-induced

changes in the tubulointerstitial compartment [7-12]. In this
study the tubulointerstitial changes of the kidneys in Sprague­
Dawley rats with unilateral renal artery stenosis were evaluated
by light microscopy, electron microscopy, immunofluorescent
and immunoperoxidase techniques. The interstitial inflamma­
tory infiltrate, which was surprisingly abundant, was pheno­
typed by monoclonal antibodies. The results suggest that isch­
emia alone can cause CTIN, and provide some insight into the
histogenesis of the observed lesions.

Methods

Experimental design

Male Sprague-Dawley rats weighing between 250 and 300
grams (60 to 70 days in age) were anesthetized with pentobar­
bital sodium (30 mg/kg i.p.) and were subjected to unilateral
stenosis of the left main renal artery (RAS). Under the dissect­
ing microscope, this renal artery was isolated and a blunted 26
gauge needle placed along its side. A ligature was then passed
around the artery and the needle at two different locations
approximately 0.9 em apart. After the needle was removed,
proper suturing and adequate pulsation of the renal artery
between the two ligations were checked to ensure that stenosis,
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but not obstruction, was created. Stenosis of the renal artery
was judged to be 90% or greater. Following recovery, the rats
were maintained on a standard diet with free access to tap
water. The control group included six normal, age- and weight­
matched, sham-operated rats.

To insure that non-sterile surgery is not a cause of the renal
lesion, sterile techniques were used for eight groups of rats each
of which consisted of two experimental rats and one sham­
operated, control rat. These groups were sacrificed at days 2, 5,
9, 14, 20, 27, 36, and 45 and the renal tissues were harvested
only for light microscopic study. The renal changes in both
experimental and control rats were similar to those in rats that
underwent non-sterile surgery, confirming that these lesions
were not related to infection.

To select the rats for detailed functional and immunologic
studies, groups of three rats each were sacrificed at different
intervals after RAS. It was found that in the stenotic kidney,
subtle tubular changes, including focal necrosis and mild atro­
phy, were noted as early as three days after RAS; however,
interstitial inflammation was not seen until nine days after RAS,
peaked at about 28 days and slightly decreased thereafter.
Tubular atrophy, thickening of tubular basement membrane,
interstitial fibrosis, tubulointerstitial calcification and glomeru­
losclerosis gradually increased until the last days of observation
(60 days). In the contralateral kidneys, (detailed in the Results
section) focal lesions were first noted on day 14 and became
more pronounced subsequently. These observations suggested
that rats with 28 days of RAS were best suited for detailed
studies.

Functional studies

For each animal, before sacrifice blood pressure was re­
corded by a Gould pressure monitor *SP1405 (Gould Instru­
ment, Oxnard, California, USA). Inulin clearance of each
kidney was measured by a method detailed elsewhere [13].

Morphologic studies

Tissue preparation. Under general anesthesia, the kidneys
and the aorta were exposed by blunt dissection with cotton
swabs. Complete exsanguination was achieved in a few minutes
by transaction of the aorta coupled with gentle cardiac massage.
The kidneys were then harvested, weighed separately and
bisected coronally. One half of each kidney was snap-frozen
and stored at -70°C until used. A thin strip of the other half was
immediately fixed in 4% glutaraldehyde for electron microscopy
and the rest was fixed in 10% buffered formalin for light
microscopy.

Light microscopy (LM). Aside from routine examination of
formalin-fixed, paraffin-embedded tissue sections stained by
hematoxylin and eosin, periodic acid-Schiff (PAS) and Mas­
son's trichrome techniques, the following features were mor­
phometrically evaluated in each case: (1) number of sclerotic
glomeruli expressed as a percent of the 40 to 100 glomeruli
counted in each specimen; (2) mean diameter of cortical tubules
[at least 50 cross-sections of tubules were measured, using a
morphometric computer system (Software: Bioquant, R&M
Biometric, Nashville, Tennessee; hardware: Compaq 286,
Houston, Texas, USA)]; (3) mean glomerular diameter (at least
20 glomeruli, excluding the globally sclerotic one, each having
a vascular pole, were used; measurement was made for the

diameter connecting the vascular pole and the corresponding
point on the Bowman's capsule); (4) percentage of tubular cross
sections showing mononuclear, inflammatory cell infiltration
between tubular cells (tubulitis); and (5) the concentration of
interstitial inflammatory cells, expressed as the mean count of
these cells in five cortical fields, each being delineated by a one
cm2 grid attached to the eyepiece; the x40 objective lens of an
American Optic Microscope was used for this study.

Immunofluorescent study (IF). Five micron sections of the
snap-frozen tissues were stained with fluorescein isothiocy­
anate-Iabeled rabbit antibodies against rat IgG, IgM and C3,
respectively (dilution 1/50, Cappel Laboratories, Cochran,
Pennsylvania, USA).

Electron microscopy (EM). Both cortical and medullary
tissues were subjected to EM study, using a standard tech­
nique. To avoid potentially misleading artifacts associated with
immersion fixation, perfusion-fixed renal tissue from two addi­
tional experimental animals were also examined.

Immunohistochemistry. To test the hypothesis that the anti­
genic profile of renal tubules is altered by ischemia, sections
from both formalin fixed and' frozen tissues were stained for

keratin (AE/AE3 antibody, dilution 1/50, Hybridtech, San
Diego, California; and CAM 5,2 antibody,prediluted, Becton
Dickinson, Mountain View, California, USA), for actin
(HHF35 antibody, Enzo Co., 1:1280 dilution, New York, New
York), for vimentin (dilution 1/50, Dako, Carpinteria, Califor­
nia, USA) and epithelial membrane antigen (dilution 1/50,
Dako). A standard avidin-biotin-peroxidase-complex technique
was used for these antibodies [14].

Lectin histochemistry. To test the hypothesis that ischemia
may be associated with a profound alteration in the structure of
the surface glycoprotein of tubular cells, staining of renal tissue
with various lectins was performed. Lectins are proteins of
non-immunologic origin derived from plants; they can bind
specifically to carbohydrate groups and have been known to be
specific markers for glycoconjugates including those in the
kidney tissue [IS]. The details of the two-step biotin-peroxidase
staining technique, the specificities and the optimal dilutions of
the lectins used in this study were reported elsewhere [15], and
are summarized in Table 1.

Phenotyping of the inflammatory cells

The sources, specificities, and dilutions of the primary mono­
clonal antibodies used in this study are listed in Table 2 [1~20].
Tissue sections were stained using a modified avidin-biotin
peroxidase technique as follows [14]: four-micron thick sections
were cut from the frozen kidney tissue, dried for one hour, fixed
in acetone for seven minutes, and dried again for another hour.
Blocking of endogenous avidin binding activity was achieved by
incubating the sections with the avidin solution for ten minutes
followed by biotin solution for ten minutes (Avidin-Biotin
Blocking Kit, Vector Laboratory, Burlingame, California,
USA). Sections were consecutively incubated with primary
antibodies (Table 2) for one hour, and with secondary antibod­
ies [Horse anti-mouse Ig (ABC Kit, Vector Laboratory) diluted
in PBS containing 20% rat serum] for 45 minutes. Each of these
steps was preceded by three washes in PBS, pH 7.4. The color
reaction was developed by an incubation of ten minutes in 50
mg% diaminobenzidine (DAB) in Tris buffer (pH 7.5) activated
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Table 1. Immunohistochemical and lectin histochemical profile of
proximal tubules

Statistics

Statistical comparisons were made using analysis of variance
and the method of least significant difference for multigroup
comparisons.

Results

Morphometric studies

The morphometric data are summarized in Table 3. The
means of the wet renal weights, glomerular diameters, tubular
diameters and the percentages of non-sclerotic glomeruli of the
stenotic kidneys were significantly less than those of the con­
tralateral sides. Interstitial inflammation of the stenotic kid­
neys, and of the focallesional areas of the contralateral kidneys
was significantly more severe than that of the intact areas of the
contralateral kidneys and of control kidneys.

Functional studies

The mean blood pressures of the experimental animals
ranged from 106 to 136 mm Hg (mean 120.66 ± 4.1) and that of
the controls from 103 to 108 mm Hg (mean 105.66 ± 2.34). The
clearances of the stenotic kidneys were too low to measure. The
clearance of the contralateral kidneys and control kidneys
ranged from 829 to 3522 J.Ll/mn (mean: 3002.25 ± 561.66), and
from 1344.2 to 2309.7 J.Ll!mn(mean 1840.3 ± 140.7). When the
clearance is expressed as J.LlIg of kidney tissue, the values for
the contralateral kidneys and for control kidneys were 1693.6
J.Ll!g ± 121.6 and 1662.7 ± 375.5 J.LlIg, respectively.

Light microscopy

There was a distinct difference between the stenotic kidneys
which were atrophied and the contralateral kidneys which were
hypertrophied.

The tubules of the stenotic kidneys displayed severe changes
including diffuse atrophy, focal thickening of the tubular base­
ment membrane, loss of brush border and tubular "simplifica­
tion" in which different tubular segments lost their specific
features and assumed a uniform, undifferentiated appearance
(Figs. I and 2). There was tubular cell necrosis (Fig. 2), focal
tubular calcification and focal tubular dilatation, most pro­
nounced at the corticomedullary junction. There were focal
tubular casts consisting of homogeneous PAS positive material
with or without necrotic tubular cells (Fig. 2). Up to 49% (mean
42.2 ± 3.1) of tubular cross sections showed tubulitis in which
mononuclear inflammatory cells (averaging I to 2 per tubular
cross section) were present between tubular cells (Fig. 2). The
interstitium displayed mild, focal fibrosis and severe inflamma­
tion consisting exclusively of mononuclear cells without plasma
cells, neutrophils or eosinophils. Although the inflammation
was diffuse, it was most pronounced at the corticomedullary
junction where tubular cast were most numerous. Interstitial
Tamm-Horsfall protein was not observed. The structure of the
glomeruli was surprisingly well preserved and showed only
moderate reduction in size, and a mild degree of focal segmental
mesangial sclerosis, thickening and collapse of glomerular
capillaries (Fig. 1). The small arteries and arterioles displayed
mild focal intimal thickening.

The contralateral kidneys showed rare foci of tubulointersti­
tial damage. Each foci of involvement affected an average of
twenty adjoining tubules. The tubulointerstitial changes in these
foci were similar to those in the stenotic kidneys, except that
the degree of interstitial inflammation was significantly less
(Fig. 3, Table 4). Most of these foci did not contain glomeruli,
but when a rare glomerulus was identified, it was either normal
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by one drop ofH202• Sections were dehydrated, counterstained
with methyl green or hematoxylin and mounted.

Sections of spleen, thymus, and lymph nodes from normal
rats were examined by the above technique to confirm the
specificities of the primary antibodies. Controls for the tech­
niques included sections treated with DAB only, sections
treated with the avidin-biotin complex and DAB, and sections
treated with secondary antibodies diluted in PBS with and
without normal rat serum, followed by the avidin-biotin com­
plex,

Each phenotype was quantitated by counting (x20 objective
lens, American Optic Microscope) the number of interstitial,
positively stained cells within five fields, each being delineated
by a one cm2 grid attached to the eyepiece. Each phenotype
was also expressed as the percentage of the total number of
cells, regardless of phenotypes. The latter method of quantita­
tion was done to facilitate comparison of phenotypes from
different experimental groups, with a clear understanding that
the denominator, due to the known overlapping of antibody
specificities, does not represent the actual number of interstitial
inflammatory cells. An effort was made to use the same area in
consecutive sections for quantitation. Quantitation was per­
formed separately for stenotic kidney, atrophic and non-atro­
phic cortex of the contralateral kidney, and control kidney.

Epithelial membrane
antigen

Actin
Keratin
Vimentin
la

EABA
Sophora japonica
Ulex europaeus I
Tritium vulgaris
Canavalia

ensiformis
Phaseolus vulgaris

leukoagglutinin
Phaseo/us vulgaris

erythroagglutinin
Pisum sativum
Lens culinaris
Arachis hypogaea
Ricinus communis I
Bandeiraea

simplicifolia I
Dolichos bifiorus +++ - - +++
Glycine max +++ +++

See reference 16for details on the lectins used in this study; tubular
stainingwas semi-quantitated on a - to +++ scale (- -- no staining;+
-- mild; ++ = moderate; +++ = marked); EABA = endogenous
avidin binding activity.
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Table 2. Antibodies used in phenotyping of inflammatory cells

Clone SourcesCDSpecificity Dilution

OXI

Sera-Lab (Westbury, NewCD45Leukocyte-commonUndiluted supernatant
York)

antigen on all
hematopoietic cellsexcept erythrocytesW3/13

Sera-Lab CD2T lymphocytes, Undiluted supernatant
thymocytes, some plasma cells andstem cellsW3/25

Sera-Lab CD4T helper cells, mostUndiluted supernatant
thymocytesOX8

Sera-Lab CD8T non-helper cells,Undiluted supernatant
most thymocytes, some natural killercellsOX4

Sera-Lab NAIa marker present on BUndiluted supernatant
cells, dendritic cellsEDI

Serotec (Kidlington, Oxford,NAMacrophages, 1/600 of ascitic fluid
England)

monocytes, dendritic
cells

Refs.

[16]

[18]

[17,18]

[17, 18]

[19]

[20]

NA = not available.

Table 3. Comparative morphometric data for control and
experimental rats'

Contralateral kidneys
(N= 6)

or showed only mild changes similar to those of the stenotic

kidneys. The renal tissue surrounding the foci of tubulointersti­

tial damage was normal and displayed no significant changes.

The blood vessels in, or near, or outside the atrophic areas
showed focal intimal fibrosis, not significantly different from

one another and from the vessels in the stenotic kidneys.

The control rats sham-operated with or without sterile tech­
nique did not show any significant renal lesions; specifically,

Fig. 1. Stenotic kidney. The tubules are atrophic and display simplifi­
cation of epithelium. thickened basement membrane and tubuli tis
(arrows indicate inflammatory cells within tubular epithelium). There is
interstitial chronic inflammation. A glomerulus displays segmental. mild
mesangial sclerosis (periodic acid-Schiff. x 1478).

Stenotic Non-
Controls

kidneysAtrophicatrophic
(N= 6)

(N = 6)areasareas

1096 ± 20

419 ± 221794 ± 63
0.5 ± 0.2

14.3 ± 5.0ND1.3 ± 0.4

87.6 ± 0.9

68.0 ± 2.8ND90.4±0.1

42.5 ± 0.1

32.3 ± 0.930 ± l.l45.6±0.1

O±O

42.2 ± 3.125.6 ± 5.3O±O

Weight (mg)b
% of globally

sclerotic
glomerulic

Glomerular
diameters
(J.Lm)d

Cortical tubular
diameters
(/Lm)"

% of cortical
tubular cross
sections with
tubulitisLg

Interstitial 43.6 ± 3.1 1936.1 ± 167.2 673.6 :+: 36.1 61.1 :+: 4.7
inflammationg•h

ND = not done because glomeruli are usually not present in these
areas.

• Data are expressed as mean ± SEM

b P = 0.0000001, controls vs. stenotic kidneys vs. contralateral
kidneys

c P < 0.007; stenotic kidney vs. controls or contralateral kidneys
d P < 0.0002; stenotic kidney vs. controls or contralateral kidneys
e P < 0.000012; stenotic kidney or atrophic area of contralateral

kidneys vs. controls or non-atrophic area of the contralateral kidneys
f P = 0.0000113; atrophic area of the contralateral kidneys Ys.

non-atrophic areas or controls
g P = 0.0000001; stenotic kidneys YS. non-atrophic areas of the

contralateral kidney or controls
h The interstitial inflammation is expressed as the number of inflam­

matory cells in 5 random fields each delineated by a I cm1 reticule
attached to the eyepiece
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Fig. 2. Stenotic kidney. The structure of atrophic tubular cells (T) (probably from proximal tubules) becomes "simplified" as evidenced by a loss
of brush border, a loss of basolateral infoldings and a scanty number of organelles. Atrophic tubules also show features of tubulitis characterized
by the presence of lymphocytes (L) between tubular cells. One tubular cell (Tn) displays features of cellular damage including a loss of cell
membrane. The tubular cast (e) is composed of cell debris (electron microscopy, x 15.400).

interstitial inflammation or tubular atrophy was virtually ab­
sent.

Immunofluorescent studies

In the control kidneys and in the non-atrophic areas of the
contralateral kidneys of the experimental rats, focal, linear
staining of proximal tubular basement membrane or Bowman's

capsule for C3 was noted, but staining for IgG or IgM showed
negative results. The stenotic kidneys showed no deposits of

C3, IgG or IgM in any of the components of renal parenchyma.

Electron microscopy

The most prominent changes were present in the atrophic
tubules of both kidneys, where most tubular cells assumed an
undifferentiated appearance characterized by a cell membrane
without basal lateral infoldings or brush borders, scanty organ­
elles and loss of cell polarization (Fig. 2). Tubulitis was com­
mon, but the nature of the inflammatory cells participating in

this process could not be elucidated by EM study (Fig. 2).
Tubular cells in contact with mononuclear cells occasionally

showed degenerative features such as focal loss of cell mem­
brane, or disruption of organelles (Fig. 2). However, these
features were also seen in some tubular cells without such

contact. Some tubules showed reduplicated tubular basement

membrane, the space between which was occupied by mono­
nuclear inflammatory cells. Electron dense deposits were never
observed in any location.

Immunoperoxidase studies

The results are summarized in Table I. Epithelial membrane

antigen was not identified in kidney tissues from either control
or experimental animals. Smooth muscle cells in blood vessel
walls and mesangial cells of both control and experimental

kidneys were equally stained for actin, whereas the tubules of
neither group stained for actin. Several atrophic tubules in the
stenotic kidneys of experimental animal showed a weak staining
for keratin (Fig. 4A), whereas intact tubules in the contralateral
kidneys or kidneys from control animals did not show any
staining for keratin (Fig. 4B). Although vimentin was not seen
in any tubules in the control kidneys or in the normal tubules of
the contralateral kidneys of experimental animals from isch­
emic and contralateral kidneys (Fig. 5A). it was strongly

expressed in atrophic tubules (Fig. 5B). There was also strong
global diffuse staining for vimentins of some glomerular cells

(probably visceral epithelial cells), which did not vary among
different groups (Fig. 5A and B). The atrophic tubules displayed
a complete loss of la antigen, which was clearly identified in
normal .proximal tubules (Fig. 6A and B), and a significant
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Fig. 3. Contralateral kidney. Two foci of tubular atrophy, interstitial
fibrosis and interstitial inflammation (right and upper left) are sur­
rounded by normal tissue (periodic acid-Schiff, x 739).

decrease in the endogenous avidin-binding activity as compared
to that of normal proximal tubules.

Lectin histochemistry

The results of these studies are summarized in Table I. As

compared to intact proximal tubules, the staining of atrophic
proximal tubules by the different lectins used was either un­
changed, significantly decreased, or completely negative. The

pattern of unchanged staining was noted for four lectins (Triti­
cum vulRaris. Concanavalin ensiformis, Phaseolus vulgaris
leukoagglutinin and erythroagglutinin). The pattern of decreased
staining was noted for five lectins (Pisum sativum, Lens cu/inaris,
Arachis hypogaea, Ricinus communis I and Bandeiraea simp/ic­
ifo/ia I). Complete loss of staining was noted for Do/iclws biflorus
and Glycine max (Fig. 7A and B), which have been known to be
specific markers for glycoconjugates having oligosaccharide D-ga­
lactose-N-acetylglucosamine. There was no situation in which a
lectin histochemical staining was positive in atrophic tubules but
failed to stain intact tubules.

Phenotyping of the interstitial inflammatory infiltrates
The results are summarized in Table 4 and illustrated in

Figures 8 and 9. All the positive and negative controls yielded
appropriate results. The staining clearly showed that the inter­

stitium of the stenotic kidneys showed diffuse infiltration of
inflammatory cells stained by antibody OX, [for common
leukocyte antigen (CLA), a marker for leukocytes], OX4 (for Ia
antigen), W3/13 (mostly for T cells), W3/25 (mostly for T helper

Table 4. Phenotypes of the interstitial inflammatory infiltratea

Contralateral kidneys
(N = 6)

StenoticNon-
Controls

kidneysAtrophicatrophic
(N = 6)

(N= 6)areasareas---- .._._-,~-----~--_.~.,._-OXlb
52.3 ± 8.3654.3 ± 67.7183.0 ± 15.475.6 ± 8.7

(34.6%)
(23.8%)(23.2%)(21%)

OX4c
27.4 ± 1.41008.5 ± 124.6182.0 ± 10.459.9 :!:: 4.2

(18.1%)
(36.8%)(23%)(16.6%)

W3/13d
20.9 ± 2.5161.4 ± 15.3113.8 :!:: 12.959.4 ± 3.0

(13.8%)
(5.8%)(14.4%)(16.5%)

W3/25e
39.1 ± 5.4695.1 ± 74.8232.6 ± 18.7141.7 ± 2.8

(25.9%)
(25.3%)(29.6%)(27%)

OX8f
3.4 ± 0.876.5 ± 8.517.2 ± 2.09.9 ± 1.5

(2.2%)
(2.7%)(2.2%)(2.7%)

EDIg
7.7 ± 0.7142.7 ± 30.457.1 ± 10.912.7 ± 1.8

(5.1%)
(5.2%)(7.2%)(3.5%)

_ .._---_._--~-_._-----,-_._---_._-- ------

a Each phenotype is expressed as mean ± SEM of the counts for all
kidneys. The count for each kidney is the total number of positively
stained cells in 5 fields each delineated by a I cm2 reticule attached to
the eyepiece. Each phenotype is also expressed as % of the total
number of cells (see text for details of quantitative technique).

b p :s 0.0000001; stenotic kidneys vs. controls and contralateral
kidneys

c p :s 0.0000002; stenotic kidneys vs. controls and contralateral
kidneys

d p:s 0.0000006; stenotic kidneys vs. controls and non-atrophic areas
of contralateral kidneys

e P :s 0.000000; stenotic kidneys vs. controls and contralateral
kidneys

f p :s 0.0000001; stenotic kidneys vs. controls and contralateral
kidneys

g p :s 0.0000112; stenotic kidneys vs. controls and contralateral
kidneys

cells), OX8 (mostly for T non-helper cells), and ED, (for
macrophages). Significant differences in the percentage of each
phenotype were noted, thus the OX4 + cells were most numer­

ous, followed closely by the W3/25 t cells and the OX, + cells,
whereas the OX8+ cells were the least numerous (Fig. 9A-E).
Although the infiltrate was more pronounced at the corticomed­
ullary junction, there were no significant phenotypic differences

in the infiltrates among different areas of the kidney.
As seen in Table 2, there is some overlapping in the speci­

ficities of the utilized antibodies. Thus, although the most

numerous phenotype is OX4'"cells, it was not possible to assess
accurately the contribution of B lymphocytes to this popula­
tion, because OX4 antibody recognizes Ia antigen localized not
only on the surface of B cell but also on dendritic cells,
macrophages, and some activated T cells [19]. Moreover. the
total number ofOX4 + cells (mostly B cells) and OX 3/13 (mostly
T cells) exceeded the number of OXI + cell (all leukocytes) by
a wide margin. So were the total numbers of W3/15 + cells
(mostly T helper cells) and OX8+ cells (mostly T non-helper
cells) when compared with W3/13+ cells (T cells). These
interpretational difficulties, which have been encountered by

other investigators using similar antibodies [22-28], do not

detract from the observation that stenosis of the renal artery
can cause severe interstitial inflammation characterized by a
mixture of cells including T helper cells, B cells, macrophages
and a paucity of cytotoxic T cells.

As a rule, the stenotic kidney showed the highest density of
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Fig. 4. A. Atrophic tubules of the stenotic kidney display a weak staining for keratin (immunoperoxidase onfreshfrozen tissue, x 1,478). B. Intact
tubules of the contralateral kidney show a negative result; however. a strong positive stainingis noted for the transitional epitheliumof renal pelvis
(arrows) (immunoperoxidaseon fresh frozen tissue. x 1,478).

interstitial inflammatory infiltrates. followed by the atrophic
areas and the non-atrophic areas of the contralateral kidneys.
and the control kidneys, respectively. The percentage of the
EDt + cells, OX8+ cells, and W3/25+ cells, respectively, were
roughly similar for all four groups oflesions. However, different
percentages were noted for other phenotypes; thus, the per­
centage of OX4 + cells in the stenotic kidneys was significantly
higher than those of other types of lesions. whereas the per­
centage of the OX3/I3 + cells in these kidneys was the lowest.

Discussion

Although experimental renal artery stenosis has been created
in several animal species, including the rat, for the study of
hypertension, careful morphologic studies of the resulting
structural lesions have not been carried out [7-12]. This benign
neglect is surprising, considering the widespread belief that
ischemic damage is one of the final common pathways of
evolution for several renal diseases of diverse initial etiologies
[2, 5, 6]. The failure to adequately characterize the structural
changes induced by ischemia may well account for the poor
understanding of the mechanism by which ischemia causes
renal damage.

Unilateral renal artery stenosis in the rat model utilized in this
study resulted in well-established hypertension, and diffuse
tubulointerstitial changes in the stenotic kidneys, as well as
focal tubulointerstitial damage and compensatory hypertrophy
in the contralateral kidneys. These changes have been de­
scribed in humans with unilateral renal artery stenosis due to

atherosclerosis or vascular dysplasia [8-10]. Although the dif­
fuse tubulointerstitial lesion of the stenotic kidney is clearly
related to ischemia, the pathogenesis of the focal lesion of the
contralateral kidney is intriguing. We have speculated that this
lesion is also of ischemic nature for the following reasons. (1)
Although this lesion is small and focal, its morphological
features, including the interstitial lymphocyte phenotypes and
antigen profile of the involved tubules, are almost identical to
those of the ischemic lesion seen in the stenotic kidneys. (2)
This lesion is morphologically similar to those seen in human
unilateral renal arterial stenosis, which is thought to be at least
partially caused by ischemia secondary to hypertension-in­
duced vascular changes [8-10]. In that aspect, it is noted that
examination of several organs of the experimental animals
(lung, heart, thymus. muscle and liver) did not show the degree
of focal interstitial infiltrate and parenchymal atrophy that was
seen in the kidneys. The changes in the stenotic kidneys of the
rats closely simulate those observed in human kidneys with
unilateral renal arterial stenosis, both sharing some distinctive
features, including diffuse tubular atrophy and tubular simplifi­
cation, with a disproportionally mild degree of interstitial fibro­
sis, and a surprisingly good preservation of glomerular struc­
tures [10]. However, the kidneys in this experimental model
displayed a marked interstitial inflammation which has been
only infrequently noted in the human counterpart [10].

The renal lesions in our model are not related to several
factors discussed below. Although the possibility of ascending
infection cannot be completely ruled out without urine culture,
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Fig. 5. A. Atrophic tubules of the stenotic kidneys display a strong staining for vimentin; staining of glomerular cells, most probably visceral
epithelial cel/s, is also noted (immunoperoxidase, x J ,478). B. Intact tubules of the contralateral kidney show a negative result, whereas glomerular
staining similar to that of the stenotic kidney is present (immunoperoxidase, x 1,478).

this potential cause of interstitial inflammation is most unlikely
in this model because: (1) significant inflammation was never
observed in the non-atrophic areas of the contralateral kidneys
or in renal pelvis of either side, and (2) plasma cells and
neutrophils which would suggest an infectious etiology, at least
in early stage, were not a component of the inflammatory
infiltrate. The possibility of physical manipulation of the kidney
or infection acquired during surgery as the causes of the
tubulointerstitial changes can be ruled out by the observation
that the same renal lesions were observed in experimental rats
that underwent either sterile or non-sterile surgery, and that the
control sham-operated animal, regardless of surgical technique,
did not express these renal lesions. Although spontaneous
nephropathy has been well documented in Sprague-Dawley
rats, it is seen exclusively in aged animals (older than 16 to 30
weeks) [29-32]. All the rats used in our study are young and the
time of sacrifice were less than 90 days in age, moreover, the
renal lesions induced in our model bear little morphological
resemblance to those described in spontaneous nephropathy
[29-33]. These above considerations suggest that at least in the
rat, ischemia alone can be associated with severe CTlN. A
similar ischemic mechanism may partially explain why signifi­
cant interstitial lesions are frequently seen in advanced renal
diseases of diverse etiologies [12].

Our study suggests that ischemia not only caused marked
morphologic alterations of the tubules, but was also associated
with profound changes in the antigenic profile of the tubules,
especially the proximal tubules. These changes, which involve

both the cytoskeletal and cell membrane proteins, include a
neo-expression of vimentin and keratin, a loss or decrease of
membrane glycoproteins, a loss of la-related antigen on cell
surface and a loss of endogenous avidin binding activity.
Vimentin, a member of the family of intermediate filaments, is
expressed by embryonic renal tubular cells, but gradually
disappears when the tubules become mature [23, 26, 34].
Keratin is another member of the intermediate filament family,
and is composed of at least 19 subtypes, only some of which are
present in a specific tissue. Our study showed that although
vimentin and the subtypes of keratin detectable by the utilized
antibodies were not present in normal tubules, they were
clearly expressed by the atrophic tubules. Renal tubular cell
membrane is rich in glycoproteins. These glycoproteins can be
recognized by immunohistochemical staining with lectins,
which are proteins derived from plants that bind to specific
sequences of carbohydrates in the backbone of cellular glyco­
proteins. The lectin histochemical staining in this study dem­
onstrates that atrophic tubules show a marked decrease or
complete loss of some membrane glycoproteins. These
changes, however, are not specific for ischemic damage, and at
least some of them have been described in other conditions

including tubular damage associated with adriamycin toxicity or
protein overload and induced proteinuria [23, 26]. Whether the
tubular injury precedes these antigenic changes or is conse­
quent to it cannot be determined from the present study.
Nevertheless, these changes may potentially initiate an immune
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Fig, 6, A. Intact proximal whules (P) and some glomerular cells (arrows) of contralateral kidney show a stronR staining for la antiRen; distal
tuhules (D) are not stained !immll/lOperoxidase. x, 1,478). B. The atrophic tubules (t) of the stenotic kidney are not stained, whereas a strong
staining is noted for interstitial inflammatory cells (immunoperoxidase. x 1,478).

reaction and account for the presence of interstitial inflamma­
tion [35].

Another interesting finding in this model is the presence of
marked tubulitis. Although tubulitis has not been emphasized in
any experimental models, it has been demonstrated repeatedly
in renal allograft rejection. and less frequently in a variety of
human renal diseases with a component of tubulointerstitial

damage [36-3~1. In renal allografts. the inflammatory cells in
tubulitis have been thought t,) represent natural killer cells or

sensitized cytotoxic T cells ctfecting cell-mediated rejection. In
other renal diseases. the significance of tubulitis has not been
elucidated [36-3~1. In this modeL the ubiquitous presence of
tubulitis may be related to: (I) a profound alteration in the
antigenic protile of tubular cells, which initiates a cell-mediated
immune mechanism [29, 301: (2) an ischemia-induced expres­
sion of chemotactic factors or adhesion molecules, which

attracts the migration of lymphocytes [39-421; or (3) a passive
phenomenon associated with widespread interstitial inflamma­
tion.

Interstitiallibrosis is a defining feature ofCTIN. It is has been
described in association with ischemic damage in human kid­
neys r~. 101 and was observed in this experimental model. By
what mechanism ischemia. or other forms of CTIN, causes

interstitial fibrosis is not clear [l'S. 101. In the final analysis.
interstitial fibrosis. to a large extent. must be related to an
increase in collagen synthesis by interstitial tlbroblasts. which
in turn are regulated by cytoactive peptides including platelet­
derived growth factor. insulin-like growth factor, transforming

growth factor, epidermal growth factor and fibroblastic growth
factor [39. 40, 43-45]. Most of these factors are known to be

released by inflammatory cells. and some of then have been
localized in normal tubular epithelial cells as well [46-50].
Whether there is an over-expression of the peptide growth
factors by damaged tubular cells is not known. Nevertheless,
tubular cells have been shown to promote the proliferation of
fibroblasts co-cultured with them in separate but communicat­
ing chambers, through an epithelial cell secretion of a mediator
related to insulin-like growth factor [51]. Alternatively, infiltrat­
ing ischemia-induced inflammatory cells may account for the

release of the growth promoting peptides.
Although severe interstitial inflammation was noted in our

model. its histogenesis is not clear. The absence of electron
dense deposits in EM studies, and of immune complex in IF
studies in both glomerular and tubulointerstitial compartments
in our study, a situation also noted in humans [8, 10], mitigates
against a role of immune complex mechanism. However. the
possibility of a cell-mediated mechanism can be raised and
interstitial mononuclear cell phenotyping was done to assess
this possibility. Similar phenotyping studies have been per­
formed on rat kidneys in other models including cyclosporine

nephrotoxicity [21]. acute unilateral obstruction [22], interstitial
nephritis due to protein overload proteinuria [26], autoimmune
interstitial nephritis [241. 5/6 nephrectomy [25]. acute and
chronic aminonucleoside nephrosis [23]. and experimental focal
segmental sclerosis [28J. Although the staining techniques and
the methods of cell quantitation in these studies are different
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Fig. 7. A. Both intact proximal (P) and distal or collecting tubules (T) of the contralateral kidneys are stained by Do/icho biflores but in different
patterns (immunoperoxidase, x / ,478). B. The atrophic proximal tubules (p) of the stenotic kidneys are not stained, however, the adjacent distal
or collecting ducts with tubular casts (arrows) are stained positive (immunoperoxidase, x 1,478).
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Fig. 8. A. Stenotic kidney. Interstitial inflammatory cells stained positive for leukocyte common antigen (LCA) are present, with a perivascular
(V) accentuation (immunoperoxidase, x 739). B. Contralateral kidney. Several LCA positive cells are seen in two small foci of tubulointerstitial
damage (upper left). These cells are scanty in the surrounding areas (immunoperoxidase, x 739).
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Fig. 9. A. Stenotic kidney. Consecutive sections of an area of interstitial inflammation stained for different markers of inflammatory cells. A. Most
of the inflammatorycells are stained positive for Ia antigen (OX4antibody). B. W3/13 antibody (mostly for T lymphocytes). C. W3/25 antibody
(mostly for T helper cells). D. OX8 antibody (mostly for t non-helper cells). E. EDl antibody (mostly for macrophages) (immunoperoxidase, x 739).

from those in our study, the same antibodies have been utilized
[21-28]. When the results of these studies are compared to one
another and to those of the present study, some phenotypic
differences are noted; for example Gillum et al [22] noted that T
helper and T non-helper cells represented the most and the least

frequent phenotype, respectively, in a model of chronic cyclos­
porin nephrotoxicity. In contrast Eddy suggested that T non­
helper cells were more numerous than T helper cells in inter­
stitial nephritis induced by protein overload proteinuria.
Careful review of data reported in these studies [21-28], how­
ever, has shown that the noted differences are due mainly to

differences in interpretation of the specificity of the utilized
antibodies. Indeed, when the raw numbers of each cell type
stained positive by individual antibodies are compared, remark­
able similarities are noted [21-28]. Thus, in all studies except
one [22] the W3/2S+ cells and the OX8+ cells represented the
most and the least numerous phenotype, respectively, with the
W3/13 and OX\ phenotypes falling in between [21, 23-26].
Moreover, in the four studies including the current one, when
the antibody OX4 was used to identify B cells [21, 23, 26], a high
percentage of interstitial inflammatory cells stained positive by
this antibody. This is in sharp contrast to that of human



Truong et al: Experimental chronic renal ischemia 1687

tubulointerstitial lesions where, without exception, B cells
represent the smallest population [52-62]. These interpreta­
tional difficulties, common to all phenotypic studies of rat renal
tissue, do not detract from the observation that there is remark­
able uniformity of cell phenotypes which constitute the renal
interstitial inflammatory infiltrates of diverse lesions.

The pathogenesis of the interstitial inflammation in ischemic
disease, as well as whether the inflammatory cells reflect a
migration of blood-borne cells to the kidneys or the prolifera­
tion of a resident population of cells, is not clear. Data obtained
from this study and from the literature suggest the blood-borne
inflammatory cells are recruited to the kidney through several
possible mechanisms: (1) ischemia-induced changes of tubular
antigenic profiles may initiate a cell-mediated immune reaction
[34,35]; (2) ischemic tubules may release inflammatory media­
tors, which in turn recruit inflammatory cells. It should be
noted, however, that most inflammatory mediators known thus
far are released by inflammatory cells, but not by parenchymal
cells [39]; (3) overproduction of ammonium, known as a form of
tubular adaptation in chronic tubular damage including that
associated with ischemia [63], has the capability to activate the
complement system, resulting in the activation of the C3-9
membrane attack complex [64, 65]. This complex, in turn, is
known to be a powerful inflammatory mediator [40]. Although
renal tissue from our model was not assessed for the presence
of C3-9 complex, its presence has been documented in several
forms of experimental or human CTIN [26, 66]; and (4) protein
overload proteinuria in rat has been reported to be associated
with interstitial inflammation, the phenotype of which was
similar to that of our model [26]. The interstitial inflammation
was thought to represent a reaction to tubular cell damage by
tubular protein overload [26]. Although proteinuria was not
evaluated in our model, proteinuria, at least of a mild degree, is
noted to be a frequent feature of ischemic renal disease in
humans [67]. From our model and other reported models of
chronic tubulointerstitial damage, it appears that tubular dam­
age, regardless of etiology, can initiate a reactive interstitial
inflammation. Although this hypothesis needs further testing, it
is supported by several observations: (1) Interstitial inflamma­
tion, though occasionally mild, is a constant accompaniment of
tubular damage [2], (2) Regardless of the primary diseases, the
final morphologic changes of the tubule are rather non-specific
but uniform [1, 2] including the ubiquitous neo-expression of
vimentin [28, 27], so are the phenotypes of the accompanying
interstitial inflammation [22-27, 51-62]; and (3) in fact, even in
tubulointerstitial nephritis induced by injection of bovine tubu­
lar membrane antigen into Brown-Norway rats-an unequivo­
cal example of antibody mediated CTIN-a late phase of
mononuclear cell interstitial infiltration occurs, the phenotypes
bf which are similar to those of the present model [25],

In summary, unilateral artery stenosis in rats induced aCTIN
characterized by a profound change in the morphology and the
antigenic profile of tubular epithelium, and a severe interstitial
inflammation. Phenotyping by monoclonal antibodies revealed
that the inflammation was composed of T helper cells, B cells,
macrophages and a scanty number of T non-helper cells. These
phenotypes were remarkably similar to those of previously­
reported tubulointerstitial nephritis of diverse etiologies, Isch­
emia may well be responsible for the changes frequently de­
scribed in CTIN.
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